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Abstract—Smart Contracts (SC for short) are gaining mo-
mentum as a suitable technology for ensuring trusted execution
of Business Processes (BP for short) in open environment.
Nevertheless, the transactional semantics of SC which follow
ACID transactions are not appropriate for BP characteristics.
Indeed, it is admitted that ACID transactions are limited
to cope with complex control structure and long running
execution of BP. Transactional Business Processes (TBP for
short) have emerged as an extension to ACID models to
overcome these limits. A TBP ensures transactional reliability
of advanced transactions having a control structure as complex
as for BP. In this paper, we propose an approach that builds on
SC and extends them to implement TBP. We extend Caterpillar,
an existing BP execution engine developed on top of Ethereum,
to implement our approach and support the execution of TBP.

Keywords-Business Processes; Transactional Business Pro-
cesses; Open and untrusted environment; Blockchain; Smart
Contracts.

I. INTRODUCTION

The advent of the Blockchain technology with its two
generations created in last years a huge amount of interest
across various industries and academic communities due
to its mechanisms to ensure trust in open and distributed
execution environments . The first generation of blockchain
allows only sending and receiving monetary values of
cryptocurrencies such as the Bitcoin. While the second
generation, also called the Smart Contracts (SC) blockchain,
enables more complex applications like a valid car sale,
a loan assessment, voting or health care tracking. A SC
is simply a program enforcing the terms of the agreement
between untrusted parties.

SC are gaining momentum as a suitable technology for
ensuring trusted execution of Business Processes (BP for
short) and BP collaborations in open environment [1], [2].
Nevertheless, the transactional semantics of SC are the same
as in ACID models [3], [4]. Consequently, we argue that
bare SC are limited to support transactional requirements of
BP executions. Indeed, it is admitted that ACID transactions
are limited to cope with complex control structure and long
running execution of BP [5], [6]. Besides, the rollback
mechanism in BP is not as obvious as for conventional
database operations.

Transactional Business Processes (TBP for short) [6],
[7] have emerged as an extension to ACID transactions to
overcome these limits. More precisely, TBP bring together
Business Processes and Advanced Transactional Models [5],
[8]. For the former, they ensure transactional correctness. For
the latter, they support large flow-based applications having
complex control structure. A TBP defines a transactional
flow on top of the control flow. The transactional flow
englobes transactional properties of the BP activities (pivot,
compensatable, retriable) and transactional mechanisms. The
latter include recovery mechanisms such as compensation
as backward recovery and alternatives as forward recovery.
This definition of the transactional flow was largely inspired
from one of the Advanced Transaction Models which is the
Flexible Transactional Model [5].

In this paper, we propose an approach that builds on SC
and extends them to implement TBP. We extend Caterpillar
[9], an existing BP execution engine developed on top of
Ethereum, to implement our approach and support the exe-
cution of TBP. Caterpillar takes a Business Process Model
Notation (BPMN) 2.0 1 specification as input and generates
the corresponding control flow in a SC.

Our approach implements a TBP where its control flow
is given as input and its transactional flow follows the
Flexible Transactional Model principles. The generated SC
implements both the control flow and the transactional flow.

For the implementation of our approach, we use scenarios
related to touristic trip planning.

The remainder of this paper is structured as follows. A
motivating scenario is presented in Section 2. In Section 3,
we introduce background concepts. We detail our approach
in Section 4. Section 5 discusses the related work. Finally,
we conclude in Section 6.

II. MOTIVATING SCENARIO

We consider a motivating scenario of a tourist who wants
to order a personalized package for her/his visit to the
Château of Tours 2. However, the choices offered to the
tourist in terms of the “ways” to visit the châteaux are

1BPMN 2.0 standard definition: https://www.omg.org/spec/BPMN/2.0
2https://www.loirevalley-france.co.uk/loire-chateaux



Figure 1. Personalized touristic package ordering process. In colors: the transactional flow

limited. She/he either buys individual tickets or chooses
one of the very few predefined packages at the available
web sites and which may not entirely reach her preferences.
As a matter of fact, offering a customized or personalized
service is a concept which is more and more used in the
domain of tourism, especially in trip planning [10]. Here, we
model a scenario of a tourist who wants to visit the châteaux
“along the river of the Cher” and thus designs and buys her
personlized package. She enters order for a personnalized
package (EOPP). She selects the châteaux that she wants
to be included in the package such as the “château of Vil-
landry” (SCVil), the “château of Chenonceau” (SCChe) and
the “château of Valençay” (SCVal). Then, after confirming
her choice of the package (CCP), she pays using one of
the available payment methods: credit card (PCC) or paying
on-the-spot (POS).

If we try to add a valid transactional flow to the presented
model according to transactional semantics in the Flexible
Transactional Model (see Figure. 1), when PCC fails, POS
will be activated as an alternative and the process ends in a
consistent state given the fact that POS always terminates
successfully. The transactional flow contains as well the
following failure recovery mechanisms: (i) in case of failure
of CCP, the work already done has to be compensated, i.e.,
selection of the package components as well as EOPP;
(ii) if SCVil fails, it will cancel the other tasks running in
parallel or compensate them if they have already completed
their work.

To motivate our choices of the used technologies, first,
the present scenario involves multiple participants, i.e., the
tourist and payment services. Thus, we are in the case of a
distributed execution where there is a need for trust and here
comes our choice of SC technology that alleviates the need
for a central orchestrator and ensures trust. For (partial) fail-
ure handling and ensuring transactional correctness, we use
the transactional mechanisms embedded in the transactional
business processes, particularly in the flexible transactional
model. In the next section, we give an overview of principal

concepts related to our work.

III. BACKGROUND CONCEPTS

A. Blockchain and Smart contracts

A blockchain [11] is a distributed ledger where data is
organized in sequence of blocks equivalent to containers
of transactions. The blockchain network is maintained by
independent computers referred to as nodes or peers that do
not know or trust each other but can connect and cooperate
to validate transactions executed on the blockchain. After
validation, peers record, share and synchronize transactions
in their respective electronic ledgers. The first generation
of blockchain allows only sending and receiving monetary
values (e.g., Bitcoin).

In the SC blockchain, meanwhile, a transaction allows
more complex operations such as the creation of a SC
and stores the results of function calls in SC. A SC can
be defined as a computer program enforcing the terms of
the agreement between untrusted parties about a valid car
sale or a loan assessment or voting or health care tracking,
etc. Any user can create a SC by posting a transaction
in the Blockchain. Once created, the contract is assigned
to a unique address (a secure identifier) used to interact
with that particular contract [12]. A SC is written in a SC-
specific programming languages like Solidity for Ethereum.
It is then compiled into ‘bytecode’ that is read and run on
the ‘ethereum virtual machine’ (EVM). A SC can define
multiple entry points of execution (function calls). After a
contract finishes processing a message it receives, it can send
back a return value to the sender. The contract’s state will
then be updated accordingly.

SC cannot exchange data with off-chain world directly.
Henceforth, Oracles are of common use in this case. Oracles
are real-time data feeds that act as mediator between SC and
external world. In more details, oracles forward a request
from external application to the SC via a Solidity event and
receive corresponding response via a contract function call.



We can trust the entire system of the blockchain because,
first, everyone in the blockchain keeps a (partial or full) copy
of the chain and can check what is exactly happening in
the blockchain. Furthermore, transactions on the blockchain
are agreed i.e., a transaction is accepted when the majority
of the network have a concensus on its validity. Finally,
transactions are immutable, they cannot be revoked and state
changes cannot be undone. Trust in the correct execution
of SC extends directly from regular transactions since their
creation function calls result from blockchain transactions.

B. Transactional Processes

The transactional approach initially emerged in the con-
text of database management systems with ACID models.
The attractiveness of this approach is due to its simplicity
and systematic way to handle failures. This lead to its
adoption to the context of flow-based applications. However,
ACID models turned to be restrictive to support such appli-
cations [5], [6]. The latter may have more complex control
structure than a simple sequence of read/write operations and
a long running execution. Besides, the rollback mechanism
is not as obvious as for conventional database operations.

Advanced Transaction Models (ATM)

ATM extend the definition of flat ACID transactions.
They relax the atomicity property to define instead the
“failure atomicity” or partial failure of a process activity
[8]. In addition, they relax isolation property to allow high
inter-process concurrency handling and compensation as
backward recovery.

Later appeared the Flexible Transactional Model (FTM)
[5] which implements many transactional mechanisms at one
time. The FTM is appropriate to business processes with
complex control structure. It includes many transactional
mechanisms: (i) it allows failure atomicity; (ii) it permits
alternatives as forward recovery ; (iii) compensation as
backward recovery and (iv) assigns termination properties
to process activities (compensatable, pivot, retriable). Let’s
come back to our motivating scenario illustrated in Figure.
1:

• SCVil is compensatable which means that its undesir-
able effects can be reversed after completion through
the execution of its compensation activity. The latter is
an additional activity that serves to reverse the effects
of the main compensatable activity.

• CCP is pivot, i.e., it (a) completes successfully or
(b) fails and compensate the work already done. Once
completed successfully, it is a no-return point in the BP
execution.

• POS is retriable, i.e., it will surely terminate
with success after a certain number of
{failure → reactivation} attempts.

• An activity can be also effect-free when it is considered
that its completion has no effect to be compensated.

Transactional Business Processes (TBP)

Transactional Business Processes (TBP for short) bring
together business processes and Advanced Transactional
Models [6], [7]. For the former, they ensure transactional
correctness. For the latter, they support large flow-based
applications with having complex control structure. A TBP
has two perspectives: the control flow and the transactional
flow. The control flow describes the order in which process
activities are activated as well as an execution preference
order among alternatives.

The transactional flow englobes a set of transactional
properties assigned to business process activities. Transac-
tional properties are the equivalent of termination properties
in the FTM, i.e., compensatable, pivot and retriable. The
transactional flow describes as well the different trans-
actional mechanisms to enable a BP either to complete
successfully or fail ”properly”. Following an activity failure,
the transactional flow: (i) tries first to execute an alternative
if it exists; (ii) otherwise in case of a fatal failure (i.e., no
alternative) causing the overall BP failure it compensates the
work already done and (iii) cancel all running executions in
parallel.

In the next Section, we present the proposed approach
consisting in extending bare SC to support the execution of
Transactional Business Processes.

IV. SMART CONTRACT-BASED TRANSACTIONAL
BUSINESS PROCESS: DESIGN PRINCIPLES

Our approach builds on an existing BPM system devel-
oped on top of Ethereum plateform called Caterpillar [9].
Caterpillar takes a BPMN 2.0 specification as input and
generates the corresponding control flow in a SC.

We extend Caterpillar in order to implement in addition
the transactional flow. Our approach implements a Trans-
actional Business Process (TBP) where its control flow
is given as input and its transactional flow follows the
Flexible Transactional Model principles. The generated SC
implements both the control flow (Section IV-A) and the
transactional flow (Section IV-B).

A. Implementing the control flow

Caterpillar logic for implementing the control flow relies
on simulating the token game and defining treatment to
execute for each state of an activity’s life cycle [1]. The
life cycle of a process activity is: enabled → started →
completed.

To do so, Caterpillar uses a Solidity code generator called
“BPMN-to-Solidity template” that generates the Solidity
code of the called “Process SC” from a given BPMN
specification. Depending on the position of the token in
the process, the template generates predefined functions to
execute in the “Process SC”.



Caterpillar uses as well a second Solidity code generator
which is the “Oracle-to-Solidity template”. This template
produces the code of the “Oracle SC”. The Oracle SC is
associated to the Process SC and handles the interaction of
the latter with external users and applications. For instance,
it publishes a Solidity event in the Ethereum log when a
user task is started. It also can read data from the Process
SC to return to the external user.

B. Implementing the transactional flow

We build on the logic of Caterpillar tool to implement the
transactional flow. First, we assign transactional properties
to process activities and enrich process activities life cycles
with transactional states in order to model their transac-
tional properties. Then, we modify the Solidity code gen-
eration templates (BPMN-to-Solidity and Oracle-to-Solidity
templates) in a way that, depending on the transactional
properties of the activity, the templates generate functions
to execute for each of the transactional states.

1) Extending activity life cycle: Each process activity has
one or many transactional properties, i.e., pivot, compensat-
able and retriable. The only termination state of an activity in
Caterpillar is completed. We add in addition four other pos-
sible termination states which are aborted, cancelled, failed
and compensated which we call transactional termination
states.

A pivot activity (Figure. 2a) (similarly to compensatable
and retriable activities) is initially at the state enabled.
Then, some event may occur and lead to an early abortion
(state aborted) or nothing happens and the activity is started.
During its execution, an activity can be cancelled. There are
next two possibilities: (a) the activity completes successfully
and reaches the state completed; (b) it fails and meets the
state failed. In addition to that, a compensatable activity
effect could be compensated (Figure. 2b). Whereas a retri-
able activity can be reactivated after failure via the retry()
transition (Figure. 2c). Finally, an activity can combine
two transactional properties like being compensatable and
retriable (see Figure. 2d).

2) Implementing transactional mechanisms: We bring the
following modifications to the Solidity code generation tem-
plates. In this way, the “Process S.C” and the “Oracle S.C”
are enriched to implement the transactional mechanisms
upon the extended life cycle:

(i) We define for each process task called ActivityName,
a state vector named StateVector ActivityName to capture
the activity state’s evolution in the “Process S.C”. StateVec-
tor ActivityName is a bit array where each bit encodes a
different state that an activity can reach. A bit array is
encoded as a 256-bits unsigned integer, which is the default
word size in the Ethereum Virtual Machine.

(ii) We generate functions corresponding to the four trans-
actional termination states. For instance, a function called
ActivityName fail() is generated. This function handles

the activity’s subsequent behavior in case it fails. Similar
functions are defined in the case of an activity’s abortion,
cancellation and compensation.

(iii) We implement the transitions (abort(), cancel(), com-
plete(), fail() and retry()) which allow the activity to move
from one state to another as functions in the “Process S.C”.
These functions update the value of activities state vectors.

(iv) We add also endorsement for events in the “Oracle
SC” to abort, compensate or cancel an activity.

Due to lack of space, we do not provide a de-
scription of the implementation of the approach. We
host the source code at https://github.com/TBP-BE/
TransactionalBP-BlockchainExecution. The source code
repository contains as well the code generated for the
motivating scenario in Section II of ordering a personalized
package.

V. RELATED WORK

Recent works use the blockchain as a coordination mech-
anism to implement the control flow of collaborative pro-
cesses. The current process state is stored on the chain and
the execution of the next process task depends on the process
data shared among the network peers.

In [13], a runtime verification mechanism is developed
to verify running choreographies of process instances on
top of Bitcoin blockchain. The approach is applicable only
to standard Bitcoin network transactions like Pay-to-Script-
Hash, over and above, it does not address fault management
and recovery. Authors make some propositions like the
participant that starts the process execution can intercept the
process token and collect it if something goes wrong with
the process execution.

In [1], authors present an approach to enable the mon-
itoring and execution of collaborative processes using
blockchain’s SC. The approach is based on a translator
taking as input the business process model in Business
Process Model Notation (BPMN) and generates the corre-
sponding contract according to specific BPMN-to-Solidity
code transformation rules. A tool named Caterpillar [9]
is derived from the approach in [1]. It is an open-source
Blockchain-based business process execution engine that
translates the business processes modeled in BPMN into
SC written in Solidity programming language. Caterpillar
supports also the execution of collaborative processes.

In a more recent work [14], authors start from a declara-
tive input (XML) and propose a set of transformation rules
to convert touristic itineraries presented in XML to SC.

However, the proposed approaches [1], [14] as well as the
existing tools like Caterpillar [9] handle only the workflow
execution of business processes without taking into consider-
ation the case of task failures and the subsequent behaviour
of the business process in such cases.

https://github.com/TBP-BE/TransactionalBP-BlockchainExecution
https://github.com/TBP-BE/TransactionalBP-BlockchainExecution


(a) Pivot activity life cycle (b) Compensatable activity life cycle

(c) Retriable activity life cycle (d) Compensatable and retriable activity life cycle

Figure 2. Activity life cycle according to the different transactional properties. [6]

VI. CONCLUSION

Motivated by the opportunities offered by the technology
of SC to enable the trusted and decentralized execution of
BP in open environments and the TBP to handle failures
and ensure the transactional correctness of BP executions,
we propose an approach that builds on SC and extends them
to implement TBP. Our approach implements a TBP where
its control flow is given as input and its transactional flow
follows the FTM principles. The transactional flow englobes
the transactional properties assigned to process activities as
well as a set of transactional mechanisms (compensation and
enabling alternatives).

In order to implement our approach, we extend an existing
blockchain-based BPM system named Caterpillar in order to
support the execution of TBP. Caterpillar generates only the
control flow of input BPMN models. We mainly modified
the Solidity code generation “templates” of the tool in order
to implement in addition the transactional flow.

We consider the present work as a first step to providing
a blockchain-based execution environment for TBP. An
avenue for future work is to examine the cost of execution
of our approach especially in case of large BPs. Finally,
we intend to consider permissioned blockchains since they
ensure better performance and privacy and (arguably) lower
operational costs.
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